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ABSTRACT

Clustering expressed sequence tags (ESTs) is a
powerful strategy for gene identi®cation, gene
expression studies and identifying important
genetic variations such as single nucleotide poly-
morphisms. To enable fast clustering of large-scale
EST data, we developed PaCE (for Parallel
Clustering of ESTs), a software program for EST
clustering on parallel computers. In this paper, we
report on the design and development of PaCE and
its evaluation using Arabidopsis ESTs. The novel
features of our approach include: (i) design of mem-
ory ef®cient algorithms to reduce the memory
required to linear in the size of the input, (ii) a com-
bination of algorithmic techniques to reduce the
computational work without sacri®cing the quality
of clustering, and (iii) use of parallel processing to
reduce run-time and facilitate clustering of larger
data sets. Using a combination of these techniques,
we report the clustering of 168 200 Arabidopsis
ESTs in 15 min on an IBM xSeries cluster with 30
dual-processor nodes. We also clustered 327 632 rat
ESTs in 47 min and 420 694 Triticum aestivum ESTs
in 3 h and 15 min. We demonstrate the quality of our
software using benchmark Arabidopsis EST data,
and by comparing it with CAP3, a software widely
used for EST assembly. Our software allows cluster-
ing of much larger EST data sets than is possible
with current software. Because of its speed, it also
facilitates multiple runs with different parameters,
providing biologists a tool to better analyze EST
sequence data. Using PaCE, we clustered EST data
from 23 plant species and the results are available
at the PlantGDB website.

INTRODUCTION

Expressed sequence tags (ESTs) are sequences of typically at
most a few hundred base pairs in length that are determined by

single-pass sequencing of the 5¢ or 3¢ ends of cDNA clones.
Because the cDNA libraries are typically generated from
tissue or developmental stage or otherwise speci®c mRNA
samples and are randomly selected for sequencing, EST
representations provide a dynamic view of genome content
and expression. Currently, more than 5 million human ESTs,
more than 3.7 million mouse ESTs, and large collections of
ESTs from various other organisms (many with hundreds of
thousands of entries each) are publicly available (http://
www.ncbi.nih.gov/dbEST/dbEST_summary.html). The pri-
mary interest in these resources is based on the ability to
derive sets of unique genes from the data that represent the
transcriptome of each species as completely as possible. This
task remains a challenging problem not only because of the
imposing size of the EST databases but also because of
intrinsic dif®culties arising from low sequence quality, highly
similar (but distinct) gene family members, chimeric cDNA
clones, retained introns and alternatively spliced transcripts,
incomplete gene coverage, and other limitations. For a recent
review of different strategies to address this task and the
associated gene indexing databases see Bouck et al. (1).

The ®rst step in deriving a gene index from an EST set is to
remove redundancy by clustering ESTs representing the same
native transcripts. The criteria and tools for clustering are
chosen depending on the precise goals of the clustering.
(i) ESTs are put into distinct clusters such that each cluster
represents a distinct gene, including all alternative transcript
isoforms derived from the same gene. This clustering strategy
is adopted in NCBI's UniGene database [http://ncbi.nlm.nih.
gov/UniGene/; see Schuler (2)]. (ii) Each EST cluster is
deemed to represent a distinct mRNA transcript. In particular,
alternative transcript isoforms are represented by distinct EST
clusters. This strategy is implicit in DNA assembly tools
such as Phrap (http://www.phrap.org/), TIGR Assembler
(3) or CAP3 (4) that are also widely used for EST clustering.
For example, the TIGR Gene Indices are based on
CAP3 clustering [http://www.tigr.org/tdb/tgi.shtml; see
Quackenbush et al. (5)]. (iii) ESTs are ®rst categorized by
their RNA source and are subsequently clustered separately
for each source sample. The Sequence Tag Alignment and
Consensus Knowledgebase (STACK, http://www.sanbi.ac.za/
Dbases.html) uses this approach to cluster human ESTs based
on tissue-speci®city (6). Because in the ®rst strategy, ESTs
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derived from alternatively spliced isoforms are grouped in the
same cluster, no consensus sequence is generated in UniGene.
The other two strategies allow generation of consensus
sequences corresponding to the putative transcript represented
by each cluster. In cases where the genome of a species is
already available, a spliced alignment of such consensus
sequences can lead to identi®cation of the locations of the
respective genes; this is a more ef®cient alternative to direct
spliced alignment of the ESTs to the genome, because of the
latter's redundancy (7).

Other than clone pair information, the primary evidence for
ESTs representing the same gene or transcript is derived from
signi®cant sequence similarity in a region of sequence
overlap. The same principle applies to fragment assembly
tools, and from that perspective, such tools can be applied to
the EST clustering problem. All these tools generate a
consensus sequence corresponding to each putative transcript.
Signi®cant sequence similarity can be ascertained by pairwise
sequence alignment allowing for mismatches and insertions/
deletions using standard dynamic programming algorithms
(8,9). However, because the run-time of these algorithms is
quadratic in the lengths of the sequences being aligned, it is in
practice computationally too intensive to be run for all pairs of
sequences. Hence, alternative means of approximate overlap
detection are used for fast identi®cation of pairs of sequences
with potential for good quality overlap, which we call
`promising pairs' henceforth. The dynamic programming
algorithm is then run on the promising pairs only. For example,
STACK clustering involves the word-based d2_cluster algo-
rithm (10), and Phrap and CAP3 generate promising pairs
using fast algorithms based on exact string matching.

Fragment assembly tools work well when the fragments
represent a random sampling of the genomic DNA with
uniform coverage. In the extreme case of near single layer
tiling for a non-repetitive source, the number of promising
pairs is linear in the number of fragments. Because ESTs are
derived as a result of gene expression, the number of ESTs that
correspond to a gene depends on the level of expression of the
gene. Thus, the EST coverage is non-uniform. As a result, the
worst-case number of promising pairs due to EST overlaps is
quadratic in the number of ESTs. Moreover, assembly
programs such as CAP3 and Phrap categorize sequences
using all possible strings of length w such that all sequences
containing a speci®c substring of length w are in the same
category. This affects the run-time of the software in
generating the promising pairs. For instance, if two ESTs
share a substring of length l > w, then all the l ± w + 1
substrings of length w that are common to it within the l-length
match should be considered before detecting the presence of
the l-length common substring. Typically as w is much smaller
than l for strongly overlapping ESTs, this affects the run-time

in generating these promising pairs. A better alternative will
be to devise an algorithm that reports pairs based on maximal
common substrings without having to collect all the smaller
length common substrings to identify them.

We tested the performance of CAP3, Phrap and TIGR
Assembler when applied to EST clustering using an
Arabidopsis benchmark EST data set. The test runs are done
on a single processor of an IBM xSeries node with 2.25 GB of
memory so that results can be compared directly with our
parallel software. The results are shown in Table 1. While the
run-times are large, a more serious problem is the memory
requirement. We observed that for large data sets such as the
rat collection comprising of 327 632 ESTs, these software
programs run out of memory. The motivation behind our work
is to overcome this memory bottleneck, in addition to reducing
run-time.

The main contribution of our research is a parallel software
program, named PaCE (for Parallel Clustering of ESTs),
which aims at clustering ESTs that come from the same gene
or from paralogous genes. Once clustered, the ESTs corres-
ponding to each cluster can be further processed with an
assembly tool, allowing generation of one consensus sequence
per putative transcript. This combination enables clustering
and assembly of large-scale EST data sets due to the following
two reasons: (i) the memory required by our clustering
algorithm grows only linearly in the size of the input, and (ii)
the input size to the assembly tools is now reduced from the
complete set of ESTs to the size of the biggest cluster
generated by PaCE (measured in the number of ESTs of a
cluster), enabling the assembly tools to generate consensus
sequences without running out of memory. In addition to
memory bene®ts, our novel ideas for generation of promising
pairs in parallel and management of EST clusters reduce the
run-time signi®cantly, while ensuring good quality clustering.

For the purpose of quality assessment, we have used a
benchmark clustering created based on spliced alignment of
ESTs on the Arabidopsis thaliana genome (11). CAP3 was
used for assembly on each of our PaCE clusters because it
gives the best quality results of the three software programs we
tested [see also Liang et al. (12)].

MATERIALS AND METHODS

In this section, we ®rst give an overview of the EST clustering
problem and our novel approach and then give details of the
implementation. Experimentation with current software indi-
cates that pairwise alignment using dynamic programming is
the run-time intensive part and generation of promising pairs
is the memory intensive part. To satisfactorily address these
potential bottlenecks, we designed the following approach.
Initially, each EST can be thought of as a cluster by itself. Two

Table 1. Run-times (min) of TIGR Assembler, Phrap and CAP3 on different portions of the complete 168 200 Arabidopsis benchmark data set

Input (n) TIGR Assembler Phrap CAP3
Run-time PMU Run-time PMU Run-time PMU

50 000 321 1.3 GB 38 1.07 GB 72 711 MB
100 000 1114 2.23 GB 85 1.17 GB 150 1.93 GB
168 200 X X 224 2.2 GB X X

PMU, peak memory usage; X, a total of 2.25 GB of memory was not suf®cient for the software to complete execution.
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EST clusters can be merged provided an EST from each
cluster can be identi®ed that show strong overlap using the
pairwise alignment algorithm. This process is continued until
no further merges are possible. If a pair of identi®ed ESTs
does not show strong overlap, the corresponding clusters
cannot be merged, and the effort in testing is wasted.
However, there may be another pair of ESTs from these
clusters that may have strong overlap, causing the clusters to
merge when this pair of ESTs is aligned. The order in which
promising pairs are processed does not affect the ®nal set of
clusters formed. However, the order does have signi®cant
in¯uence on the run-time it takes to compute the clusters, as
explained below.

Signi®cant savings in run-time can be achieved by fast
identi®cation of pairs that would likely yield a positive
outcome when the pairwise alignment algorithm is run. A
positive outcome helps in merging of two clusters. As a result,
it is no longer necessary to test pairs of ESTs where each is
drawn from one of the two clusters. Hence, by early
identi®cation of promising pairs of ESTs that cause clusters
to merge, it becomes unnecessary to align many promising
pairs generated at later stages. Thus, instead of merely ®nding
all pairs that meet a certain test criteria (such as sharing a
substring of length 20 or more), we generate pairs in
decreasing order of overlap quality, as measured by an
ef®ciently computable measure. We use maximal common
substring length as the measure. A maximal common substring
of a pair of sequences is a substring common to both the
sequences that cannot be extended at either end to result in a
longer match. The rationale for using the measure is that pairs
of ESTs with larger length exact matches are more likely to
pass the alignment test. To eliminate the large memory
required for storing the promising pairs, we designed an on-
demand algorithm that remembers its state and produces the
next set of pairs as and when required. We also address the
important problem of avoiding generation of the same pair
multiple times, even though it is nontrivial to do so because we
do not store previously generated pairs. Our algorithm uses the
generalized suf®x tree (GST) data structure (13).

The organization of PaCE is as follows. We ®rst build a
distributed representation of the GST data structure in parallel.
This data structure is constructed for the input set of EST
sequences and their Watson±Crick complements, and is used
for on-demand generation of promising pairs of ESTs in
decreasing order of maximal common substring length. The
pair generation itself is done in parallel. Maintaining and
updating of the EST clusters is handled by a single processor,
which acts as a master processor directing the remaining
processors to both generate batches of promising pairs and
perform pairwise alignment on selected promising pairs. It is
not mandatory to perform pairwise alignment of each
generated pair because the current set of EST clusters may
obviate the need to do so. Hence, the master processor is also
responsible for the selection of pairs to be aligned and is a
necessary intermediary between pair generation and align-
ment. In order to reduce communication overhead, the master
processor dispatches the selected pairs in batches of size
batchsize, a con®gurable parameter. To provide an added
degree of ¯exibility in balancing the load, we do not require
that a pair generated on a processor be allocated to the same
processor if a pairwise alignment is needed.

The execution of the software can be labeled as two
successive phases: we refer to the GST construction
component as the preprocessing phase, and the components
for pair generation, pairwise alignment and EST cluster
management collectively as the clustering phase. In what
follows, we describe each component of PaCE and the core
ideas in our memory and time ef®cient parallel algorithms. For
computational purposes, we represent each EST sequence as a
string over alphabet S = {A, C, G, T}. We use the following
notations. Let n be the number of EST sequences and the
set z = {e1, e2, ¼, en} denote the ESTs. The sum of the lengths
of all the n ESTs is denoted by N. Let l be the average length of
an EST, i.e. l = N/n. Let S = {s1, s2, ¼, s2n} denote the 2n
sequences such that ei = s2i ± 1 and ei = s2i, where each eÅi

denotes the complementary strand of ei. We use the terms
sequence and string in an equivalent manner.

Parallel construction of GST

Let s be a sequence of length m over alphabet S. A suf®x tree
for s is a directed tree with m leaves numbered 1 through m
(13). Let the path-label of a node v denote the sequence
obtained by concatenating the edge labels on the path from
root to v. Let the string-depth of a node v denote the number of
characters in its path-label. The tree has the property that the
path-label of the leaf labeled i is the suf®x starting at position i
of s. A GST for a set of n sequences is a suf®x tree constructed
using all suf®xes of the n sequences. If N is the sum of the
lengths of all the sequences, the GST has at most N leaves,
exactly N leaf labels, O(N) size, and can be constructed in
O(N) time (13). The main idea of using a GST data structure
for generating promising pairs is that if two ESTs share a
maximal common substring, then it will be represented as a
path-label of a node in the corresponding GST, with suf®xes
from the two ESTs starting with the common substring
occupying leaves in the subtree of the node.

We construct the GST for S in parallel as follows. Initially,
the ESTs are distributed across processors such that each
processor has an approximately equal share of the input. Each
processor scans its ESTs and partitions the suf®xes of these
ESTs into at most |S|w buckets, based on the ®rst w bases. The
total number of suf®xes in each bucket over all the processors
is computed using a parallel summation algorithm in O(log p)
communication steps, where p denotes the number of proces-
sors. The buckets are then distributed to the processors such
that (i) all the suf®xes in a bucket are allocated to the same
processor, and (ii) the total number of suf®xes in all the
buckets in each processor is close to O(nl / p). In the
subsequent step of constructing the local portions of the GST,
the former eliminates the need for communication, while the
latter ensures load balancing.

For each bucket, the processor responsible for it constructs
the portion of the GST using all the suf®xes in the bucket.
Note that a sequential suf®x tree construction algorithm can no
longer be used because not all suf®xes of an EST fall in the
same bucket, unless the EST sequence is a repetition of a
single base. To construct the local GST, we use the simple
approach of scanning the sequences one base at a time.
Assuming the construction of each processor receives O(nl / p)
suf®xes with an average length of l, the run-time for local GST
is O(nl2 / p). This algorithm works well in practice because l is
small and is independent of n.
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Note that the local GST on a processor represents a
collection of subtrees in the GST for all n ESTs and their
reverse complementary strands, except the portion consisting
of nodes with string-depth < w. Care must be taken in choosing
w. While assigning a large value may result in loss of some
potential overlapping pairs, assigning a low value will result in
a small number of buckets for distribution among processors.
A value of 10 will generate as many as 410 > 1 000 000
buckets, enough to distribute them in a load-balanced fashion
even on large multiprocessor systems. Because of concern for
space-ef®ciency, each subtree in the local GST is stored in the
order of depth-®rst search traversal of the tree. Each node
contains a single pointer to the rightmost leaf in its subtree. All
the children of a node can be retrieved using the following
procedure. The ®rst (leftmost) child of a node is stored next to
it in the array. The next sibling of a node can be obtained by
following the pointer to its rightmost leaf and taking the node
in the next entry of the array. If the rightmost leaf pointers of a
node and a child of it are identical, the child is the rightmost
child of the node. Each node also stores its string-depth, where
the string-depth is measured with respect to the global GST.

On-demand pair generation

Once the GST for S has been constructed, it can be used to
generate promising pairs. Our algorithm for on-demand pair
generation is a variant of the suf®x tree algorithm for
computing all maximal repeats of a sequence (13). A pair of
EST sequences should be reported if they share a maximal
common substring of length greater than or equal to a
threshold value. Because a pair of sequences can have more
than one such maximal common substring, our algorithm
might generate the pair more than once. The number of such
duplicates per pair generated by our algorithm is at most the
number of distinct maximal common substrings of the pair.
The key here is that we report the presence of a maximal
common substring for a pair directly from the suf®x tree,
without having to look at all the smaller length non-maximal
common substrings contained within it. This results in a
signi®cant reduction in the run-time as opposed to the methods
deployed in generating promising pairs by existing software as
explained in the Introduction.

The following provides de®nitions and notations required
for describing our on-demand pair generation algorithm. A
substring a of a sequence is said to left-extensible (alterna-
tively, right-extensible) by character c if the character to the
left (alternatively, right) of a in the sequence is c. If a is a
pre®x of the sequence, then it is said to be left-extensible by l,
the null character. For a given pair of sequences, a common
substring a is maximal if it is neither left-extensible by the
same character nor right-extensible by the same character in
both sequences. For a node v in a GST for S, let leaf-set(v) S
represent the set of ESTs in S which have at least one of their
suf®xes as a path-label of some leaf node under v's subtree. If
two suf®xes from different sequences are in the leaf-set of an
internal node in a GST, the sequences share a common
substring of length equal to the string-depth of the node. Thus,
the pair of ESTs can be generated if the substring can be
identi®ed to be maximal.

To generate pairs, we ®rst sort the nodes of the GST in
decreasing order of string-depth, and process them in that
order to ensure that a pair with a longer maximal common

substring is reported before a pair with a shorter length
maximal common substring. For each node v in the tree, we
store the set of sequences found in the leaf-set of its subtree.
This set is partitioned into ®ve sets lA(v), lC(v), lG(v), lT(v) and
ll(v), referred to as the lsets of v. If a sequence si is in lc(v) (for
c Î S È {l}), then there exists a suf®x of si in the leaf-set of
the subtree under v such that the suf®x is left-extensible by the
character c. If the suf®x is the entire sequence, then it is
considered left-extensible by l. The lsets at a node are
generated after it is processed, and are removed after its parent
is processed. This limits the total space required for storing
them to O(N), linear in the size of the input.

Figure 1 illustrates the main idea used in the pair generation
algorithm. Consider a node v and its children u1, u2, ¼, um.
Before generating the pairs, the lsets of each child node are
scanned (in no particular order) to ensure that a sequence is
present in at most one lset of one child node, by arbitrarily
removing multiple copies. This scanning can be done in time
proportional to the total length of all these lsets. After the
duplicates are removed, the pairs generated at v are given by
{(si,sj) | si Î lc(uk), sj Î ld(ul), k ¹ l, ((c ¹ d) Ú (c = d = l))}.
After generating the pairs at a node, the lsets of the children
corresponding to the same character are combined to form the
lsets at the node. Also, a generated pair is discarded if the
sequence corresponding to the smaller EST subscript number
is in complemented form. This is to avoid duplicates such as
generating both (ei, ej) and (eÅi, eÅj), or generating both (ei, eÅj),
and (eÅi, ej). It can be shown that the total run-time of this
algorithm is proportional to the number of pairs generated plus
the cost of sorting the nodes of the GST. Thus, apart from the
expense of sorting GST nodes according to string depth, which
takes O(N / p log (N/p)) run-time, the algorithm has a
generation rate of O(1) run-time per pair.

Parallel clustering

Our parallel EST clustering algorithm makes use of the
master-slave paradigm. The master processor is responsible
for maintaining and updating the clusters. It receives prom-
ising pairs of ESTs from slave processors and determines
which of these pairs should be explored using a pairwise
alignment algorithm. It dispatches pairs in units of batchsize to
slave processors to perform pairwise alignments and return the
results. Upon receiving the result of a pairwise alignment, it
determines if the clusters corresponding to the pair should be
merged based on the received results, and additional evidence
if necessary. The slave processors are responsible for gener-
ating pairs as demanded by the master processor and to
perform pairwise alignments of the pairs dispatched by the
master processor.

The clusters are maintained by the master processor using
the union-®nd data structure (14). Initially, each EST is in a
cluster of its own. We require two operations on the cluster:
(i) to ®nd the cluster of an EST (®nd), and (ii) to merge two
clusters (union). The average run-time per operation using the
union-®nd data structure is given by the inverse Ackermann's
function (14), a constant for all practical purposes.

The master processor maintains a large buffer of pairs yet to
be processed. A message received by the master processor
from a slave processor consists of two partsÐresults of the
pairwise alignment for a number of pairs (same as the
batchsize) and a batch of the next set of promising pairs
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generated on the slave, the number of which is based on a
previous request from the master processor. It updates the EST
clusters using the results received from the slave. Once the
results are incorporated into the clusters, the master proceeds
with the task of queuing the promising pairs received to the
buffer of to-be-processed pairs. A pair is added to the buffer if
and only if the corresponding sequences are currently in
different clusters and neither of the ESTs has been shown to be
contained in any other EST. Otherwise, the pair is rejected.
The master processor immediately dispatches a message to the
slave processor consisting of (i) batchsize (fewer, if not
available) number of pairs from its buffer, and (ii) the number
of promising pairs to be returned along with results of running
pairwise alignment algorithm on each pair in (i).

The number of promising pairs the master processor
requests from a slave processor is determined as follows.
The master keeps track of the ratio m of the total number of
pairs from the most recent set of promising pairs received from
the slave to the number of these pairs actually added to the
buffer. It also keeps track of d, which is the ratio of total
number of slave processors to the number of slave processors
that have not yet run out of promising pairs. Let nfree denote
the number of free slots in the buffer maintained by the master
processor. The number of promising pairs requested from
the slave processor is determined by d 3 min(m 3 batchsize,
nfree / p). This is to receive approximately batchsize number
of useful promising pairs from each slave, without running the
risk of over¯owing the buffer in case all the received pairs are
added to the buffer.

To get the process started, each slave processor initially
generates 3 3 batchsize number of pairs, consisting of three
equal portions of batchsize number of pairs. At the beginning,
all promising pairs must be explored. The processor imme-
diately sends the third portion to the master processor, and
starts pairwise alignments on the ®rst portion. Once the results
of the ®rst portion are obtained, it sends the results along with
a newly generated batch of pairs to the master processor.

While waiting to receive another batch of pairs from the
master processor, it works on the second portion. Thus, the
processor always has the next batch of pairs to work on,
between submitting the results of the previous batch and
receiving another set of pairs from the master processor. Much
of the overhead in communication is masked by this overlap-
ping of computation and communication.

To perform pairwise alignment, recall that a maximal
common substring of the pair is already known. Figure 2a
shows the dynamic programming table for computing the
pairwise alignment. Instead of aligning entire ESTs, we reduce
work by merely extending the maximal substring match at
both ends using gaps and mismatches. This limits the area of
the table to be computed as shown in Figure 2b. To further
limit work, we use banded dynamic programming (15), where
band size is determined by the number of errors tolerated.
Quality can be controlled by the set of parameters described in
the Results section.

Data sets

The accuracy of the results is assessed using a benchmark data
set consisting of 168 200 A.thaliana ESTs (11). To assess
quality and run-time performance as functions of data size,
two different subsets of the 168 200 ESTs were derived in the
following way: from the set of clusters representing the
benchmark data set, two subsets of clusters were randomly
extracted, such that the total number of ESTs in the clusters
was ~50 000 in one and ~100 000 in the other. The data
set consisting of 327 632 rat ESTs was downloaded from
the NCBI site (http://www.ncbi.nlm.nih.gov:80/entrez/
query.fcgi?SUBMIT=y) with the query (`rattus' [Organism]
AND EST[PROP]) (date accessed: May 1, 2002).

Software availability

PaCE is freely available for non-pro®t, academic use. The
source code and executables can be obtained by email request

Figure 1. Representation of a maximal common substring alpha of two sequences s1 and s2 in the corresponding GST. (a) The paths to the suf®xes
corresponding to the sequences that have the pre®x alpha share a common path from the root to an internal node v, whose path-label is alpha. As alpha is
maximal, the paths fork from v into two different child nodes whose incoming edges have labels starting with characters a and b (where a ¹ b). The paths end
in leaves where the suf®xes are stored in the lset corresponding to their left characters, c and d (where c ¹ d). (b) Context of the maximal common substring
alpha in the sequences s1 and s2.
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to ananthk@cs.iastate.edu. For speci®c projects, we may also
be able to provide access to our parallel cluster.

RESULTS

We implemented PaCE using C and Message Passing
Interface (MPI) (16). The software can be run on any platform
that supports a MPI compiler. Such compilers are freely
available for a variety of architectures (e.g. the MPICH
compiler; see http://www-unix.mcs.anl.gov/mpi/mpich). We
report the performance and quality results of PaCE using an
IBM xSeries cluster consisting of 30 dual-processor nodes
with 1.26 GHz Intel Pentium III processors, connected by
Myrinet. The memory available at each node is 2.25 GB.

Quality assessment

The accuracy of the results is assessed using a benchmark data
set consisting of 168 200 A.thaliana ESTs (11). The data set
was created by spliced alignment of ESTs to their cognate
locations in the Arabidopsis genome, with subsequent clus-
tering based on genome location: ESTs with genomic
locations overlapping by at least 40 bp were clustered. Out
of the 168 200 ESTs, 146 527 ESTs mapped to unique
locations on the genome, while the rest (21 673 ESTs) mapped
to more than one cognate location. Each EST aligning to more
than one genome location was mapped to the cluster
corresponding to the location that gave the maximum
alignment score with the EST. This procedure of generating
the benchmark clusters captures various interesting cases:
(i) ESTs originating from the same gene are clustered
irrespective of their mRNA transcript source, and (ii) ESTs
originating from highly similar genes are separated. Chimeric
ESTs were not included in the benchmark data set.

Our procedure was to cluster the benchmark data set with
PaCE, and then run CAP3 on each resulting cluster. As a result
of this process, each cluster generated by PaCE can potentially
give rise to multiple consensus sequences. ESTs are then
grouped based on the consensus sequence that each corres-
ponds to; henceforth, we will refer to the set of clusters
resulting from this grouping as the PaCE clusters. We
compared the PaCE clusters against the benchmark clusters.
To study how CAP3 behaves stand-alone for EST clustering,
we grouped ESTs based on consensus sequences obtained by
directly running CAP3 on the benchmark data set, and
compared the resulting set of CAP3 clusters against the

benchmark clusters. Running of CAP3 on 168 200 ESTs was
enabled by running it on a computer with 3.25 GB of available
memory.

To assess quality as a function of the data size, two sets of
clusters were extracted from the benchmark clusters, such that
the number of ESTs represented by the sets are ~50 000 and
~100 000, respectively. The ESTs were input to the programs
in no particular order.

Let a set of clusters generated by a program (PaCE or stand-
alone CAP3) be referred to as test clusters. To make a
comparison between a set of test clusters and the correspond-
ing benchmark set of clusters, we adopted the following
approach. For each set of clusters, generate all pairs of ESTs
from each cluster, such that both ESTs of a pair are from the
same cluster. Based on the number of such pairs generated the
following measurements are de®ned. A pair generated from
the test clustering is called a true positive (TP) if it is also
paired in the benchmark clustering; it is called a false positive
(FP) otherwise. A pair that is not generated from the test
clustering is called a true negative (TN) if it is not paired
according to the benchmark clustering; it is called a false
negative (FN) otherwise. Based on these measurements,
another set of quality measures are de®ned as follows.
Overlap quality indicates the ratio of the number of TPs to
the total number of unique pairs extracted from clusters of
both results, and is given by OQ = TP / (TP + FP + FN); OQ is
also known as Jaccard index (17). Speci®city is the fraction of
correctly predicted pairs with respect to the total number of
pairs from the test clustering, and is given by SP = TP / (TP +
FP). Sensitivity is the fraction of the correct pairs generated by
the test clustering, and is given by SE = TP / (TP + FN).
Overall performance is given by the correlation coef®cient:

CC � �TP� TN ÿ FP� FN����������������������������������������������������������������������������������������������������������TP� FP� � �TN � FN� � �TP� FN� � �TN � FP�p :

Ideally, OQ = CC = SP = SE = 100%.
The results of assessing the quality of PaCE clusters and

CAP3 clusters against the benchmark clusters for different
data sizes are shown in Table 2. Observe that the results
generated by both programs are close, with CAP3 showing
slightly better results than PaCE for larger data sets. We used
the following alignment parameters: match score = 2,
mismatch score = ±5, gap opening = ±6 and gap continuation
= ±1. In addition, we de®ne a minimum threshold on the

Figure 2. (a) Pairwise alignment strategy for extending a maximal common substring at both ends. (b) Four types of overlaps accepted as indication to merge
clusters, and their corresponding optimal paths in the dynamic programming table. For instance, the labeling a¼c means the alignment of the sequences
containing the path from point a to point c.
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number of bases that should be part of an alignment for it to be
acceptable (value of 40) and a minimum threshold on the
quality of the alignment (value of 0.75). This quality is
measured as the ratio of the obtained score of the alignment to
the score that would have resulted if the aligning region were a
complete match. For CAP3 we used 75% identity as the
quality threshold parameter value. All parameter values are
based on the values that were observed to simultaneously
optimize sensitivity and speci®city of the results. To enable
direct comparison with CAP3, we also compared the PaCE
clusters to CAP3 clusters. The assessment results for 168 200
ESTs are as follows: OQ = 95.25%, SP = 98.76%, SE = 96.4%
and CC = 97.58%.

Figure 3 shows the number of clusters in the PaCE
clustering as a function of the cluster size for 168 200 ESTs.
There are 34 clusters with size above 200 (not shown in the
graph), with the largest size being 1008. A large number of
clusters formed contain single ESTs, which we refer to as
singleton clusters. Table 3 shows a comparison of the number
of singleton and non-singleton clusters as per all the three
results for the 168 200 data set. While singletons constitute
36.6% of the benchmark clusters, they constitute 43.1 and
50.5% of the PaCE and CAP3 clusters, respectively.

Quality assessment using clone pair information

As mentioned before, the benchmark data we use is based on
spliced-alignment of the Arabidopsis ESTs with its genome.
Even though this ensures that the ESTs that are mapped to the
same benchmark cluster are from the same gene, it does not
necessarily imply the converse. For instance, if two sets of
ESTs are derived from the two ends of a cDNA transcript, and
if none of the ESTs derived from the 5¢ end overlap with any of
the ESTs from the 3¢ end, then the benchmark clustering will
place the ESTs in two different clusters instead of one cluster.
This is due to lack of coverage of the cDNA transcript by the
set of ESTs that are derived from it, and the spliced alignment
program does not have enough information to merge the two
clusters.

As our original intention is to create a benchmark clustering
based on gene homology, we overcame this dif®culty by
adding available information about cDNA clones from the
EST data set in the following way: ESTs are grouped as pairs
based on their source cDNA clones (18). Following this, the
benchmark clusters are updated by merging the clusters that
are linked by at least one clone pair identi®er. Note that it
might happen that clone information is not available for some
of the ESTs in the input data set, or there are ESTs that were
originally derived from non-overlapping cDNA transcripts of

the same gene. In such cases, the benchmark clustering is
based only on spliced alignment results. For the 168 200 ESTs,
16 992 pairs of ESTs were linked with clone pair identi®ers.

PaCE clustering allows for input of clone pair information.
Using the aforementioned clone pair information, updated
PaCE clusters were obtained in the following manner for the
different subsets of the benchmark data sets: cluster the
benchmark data set using PaCE with the added input of clone
pairs; run CAP3 on each resulting cluster and group ESTs
based on consensus sequences. Because CAP3 does not have
the clone pair information, the CAP3 step can potentially
separate two ESTs that were clustered by PaCE based on clone
pair linkage. To overcome this problem, we again merged the
clusters resulting from CAP3 based on clone pair information.
The results were compared against the corresponding bench-
mark clusters. To measure the improvement in the quality of
clustering arising due to clone pair information, we also
compared the PaCE clusters obtained without clone pair
information (as explained in the previous section) against the
same benchmark clusters.

The results for the data set of 168 200 ESTs and selected
portions of it are shown in Table 4. For the 168 200 data set, it
was observed that out of a total of 22 029 new benchmark
clusters, 5449 are singletons, while in the PaCE clustering
obtained with the clone pair information, a total of 29 481
clusters were created, out of which 12 788 are singletons.
More importantly, it can be observed from Table 4 that the

Figure 3. Number of clusters generated by PaCE for 168 200 Arabidopsis
ESTs as a function of cluster size. There are 34 clusters with size above 200
that are not shown in the graph, with the largest size being 1008.

Table 2. Quality assessment of PaCE and CAP3 clusters using different
portions of the benchmark data set

n 50 012 100 003 168 200
PaCE CAP3 PaCE CAP3 PaCE CAP3

OQ 86.87 89.32 84.84 89.13 88.87 90.35
SP 98.67 98.13 96.2 95.62 96.5 96.15
SE 87.91 90.87 87.78 92.92 91.83 93.74
CC 93.12 94.42 91.89 94.26 94.13 94.94

The comparison in either case is done against the corresponding benchmark
clusters.

Table 3. Distribution of the number singleton and non-singleton clusters
for benchmark set of 168 200 Arabidopsis ESTs

Cluster results Number of
singleton clusters

Number of
non-singleton clusters

Benchmark 10 803 18 727
CAP3 17 930 17 556
PaCE 14 802 19 536

Nucleic Acids Research, 2003, Vol. 31, No. 11 2969



overall quality of the PaCE clusters improved with the
addition of clone pair information.

Run-time assessment

We ran our software for various subsets of the Arabidopsis
benchmark data set using different numbers of processors. The
total run-time as a function of the number of processors
(denoted by p) is shown in Figure 4a. As can be observed, the
run-times show near perfect scaling with the number of
processors. The growth of the run-time as a function of the
data size for a ®xed number of processors is shown in
Figure 4b. While the memory required scales linearly with the
problem size, the total run-time cannot be analytically
determined and depends on the input data set.

A subdivision of run-time into the time spent in each of the
two phases for 20 000 ESTs is shown in Table 5. For larger
input sizes, the dominant contributor to the total run-time is
the clustering phase. The preprocessing phase scales linearly
with the number of processors. The clustering phase is
expected to take quadratic run-time due to the number of
promising pairs generated. However, the run-time spent in
doing pairwise alignment is signi®cantly reduced because
(i) our pair generation algorithm reduces the number of
duplicates generated per promising pair, and (ii) high quality
promising pairs are processed ®rst which has a ripple effect of
eliminating the need for aligning many other promising pairs.
Because of these reasons, for small data sizes the clustering
phase runs faster than the preprocessing phase as seen from
Table 5.

As an illustration of the capability of PaCE to solve large
problems, we clustered 327 632 rat ESTs on 64 processors in
under 47 min. The preprocessing phase took ~15 min while the
clustering phase took ~32 min.

The total number of promising pairs generated and the
number of these pairs assigned for pairwise alignment as a
function of the data size are shown in Figure 5. For the 168 200
data set, only 22% of the promising pairs generated are
actually assigned for alignment. This clearly explains the
reduction in run-time achieved as a consequence of generating
the promising pairs in decreasing order of maximal common
substring length, as opposed to the traditional way of
generating them in an arbitrary order.

The effect of run-time for the clustering phase as the
batchsize (number of pairs allocated in each batch for pairwise
alignment) is varied for clustering 20 000 ESTs on 32
processors is shown in Figure 6. If the batchsize is small, the
communication overhead between the master processor and
slave processors dominates. If the batchsize is large the slave
processors generate more latency in generating subsequent

promising pairs, and also fail to take advantage of the latest
clustering information available to determine if an alignment
that is assigned is necessary. The optimal batchsize, which is
expected to increase with increase in the number of proces-
sors, can be found experimentally. For the range of processors
used in our experiments we found the optimal batchsize to be
in the range of 40±60. Fixing the batchsize and increasing the
number of processors used gradually increases the percentage
of the total time the master processor is busy. However this is
well under 2% even on 60 processors. Thus, using a single
master processor is unlikely to be a bottleneck even for a large
number of slave processors.

For the run-time results shown here, clone pair information
was not included as part of input for PaCE. From our
experiments we observed that adding clone pair information to
the input improves the run-time. This results from the fact that
the program can start with a reduced number of initial clusters
(as opposed to starting with each EST occupying an individual
cluster of its own).

DISCUSSION

We scrutinized the EST clusters resulting from both PaCE and
CAP3 against the benchmark clusters to uncover interesting
cases. Many instances where PaCE and/or CAP3 clustering
disagree with the benchmark clustering were studied. As a
result, various interesting cases such as lack of coverage over a
cDNA clone and the effect of clone pair information on the
joining of clusters were observed. These observations are
illustrated in Figure 7, by showing spliced alignment of the
ESTs in question to the Arabidopsis genome. In the ®gures,
each blue bounded box denotes a cluster generated by PaCE
with the enclosed set of ESTs as its constituents. Similarly, a
brown bounded box denotes a CAP3 EST cluster.

Figure 7a illustrates a case of lack of coverage where a set
of 5¢ and 3¢ end ESTs of a transcript do not show full coverage
over the transcript. As the primary mechanism of building
clusters in PaCE is through detection of signi®cant overlaps, it
generates two clusters for the ESTs, one corresponding to each
end. However, when the clone pair information of two of the
ESTs (one from each end) is provided, PaCE made one cluster
containing all the ESTs.

Figure 7b shows a spliced alignment of a set of 12 5¢ and 3¢
end ESTs, where there exists a pair of 5¢ and 3¢ end ESTs that
overlap. As the overlap is quite signi®cant, PaCE generates
one cluster for all the ESTs in the set agreeing with the
benchmark clustering. However, CAP3 separated them into
two clusters as shown. We observed that this separation occurs
only when CAP3 is run directly on the 168 200 data set; if

Table 4. Quality assessment of the PaCE clusters obtained with and without clone pair information, using different portions of the benchmark data set

n 50 012 100 003 168 200
PaCE w/o CP PaCE w/ CP PaCE w/o CP PaCE w/ CP PaCE w/o CP PaCE w/ CP

OQ 84.29 88.06 81.94 87.46 85.89 88.74
SP 98.71 97.75 96.28 94.98 96.43 94.94
SE 85.23 89.88 84.62 91.7 88.71 93.14
CC 91.21 93.72 90.26 93.32 92.49 94.04

The comparison in either case is done against the corresponding benchmark clusters updated with the clone pair information. CP, clone pairs; w/, with; w/o,
without.
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CAP3 is run on only these 12 ESTs as input then it puts them
together. As the clusters resulting directly resulting from
PaCE put these 12 ESTs in one cluster, the ®nal PaCE
clustering after running CAP3 on each PaCE cluster, also had
these together.

Figure 7c shows a case where a set of 5¢ and 3¢ end ESTs
show some overlap, but PaCE separates them into two
different clusters. This is because the overlap quality is not
signi®cant according to the threshold used in PaCE. CAP3, on
the other hand, places all the ESTs into one cluster, agreeing
with the benchmark clustering.

In the case of an EST that shows strong alignment to
multiple gene sources, PaCE may group all the ESTs from
these gene sources into a single cluster. The cluster is
subsequently broken up during the assembly process. For
instance, the 168 200 benchmark data set includes 21 673
ESTs aligning to multiple locations. Running PaCE on this
benchmark generated 33 310 clusters. Subsequent to assem-
bly, the number of clusters generated were 34 338, resulting in
an increase of 1028 clusters.

Capabilities and ¯exibility of our software

The performance results of our software illustrate that fast and
accurate clustering of large EST data sets with feasible
memory requirements is no longer impossible. By experi-
mentation, we found that the current version of PaCE is
capable of handling up to 20 000 ESTs per processor equipped
with 512 MB of RAM each. Based on this data and the fact
that the memory requirement for PaCE scales linearly with the
data size, our estimate suggests that it can cluster the human

Figure 4. (a) Run-times for PaCE as a function of the number of
processors. (b) Run-times for PaCE as a function of data size for a ®xed
number of processors.

Table 5. Run-time (s) spent in various components of PaCE for 20 000
ESTs

p Preprocessing Clustering Total

4 273 102 375
8 119 50 169

16 61 26 87
32 38 15 53
60 29 10 39

p, number of processors.

Figure 5. The number of promising pairs generated and the number of pairs
aligned as a function of the data size. Also shown is the numbers of pairs
actually responsible for the generated clustering (`Aligned and accepted').

Figure 6. Variation in PaCE run-time as a function of the number of pairs
allocated for pairwise alignment per communication.
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EST collection (~5 million ESTs) using 512 such similarly
equipped processors. In our experiments, the largest data size
clustered by PaCE is 420 694 ESTs for Triticum aestivum.

Apart from its performance capabilities, PaCE is adaptable
to incorporating various functional re®nements to improve the
quality of clustering. The software can be tailored to use

Figure 7. Schematic depiction of spliced alignment of ESTs to the Arabidopsis genome, as an illustration of the various cases studied to enable understanding
the behavior of our software. ESTs are identi®ed by GenBank gi number. Filled boxes represent exons and thin lines represent introns. Arrows identify the 3¢
ends of the ESTs. The multi-exon 5¢ ESTs are marked by green color at their 5¢-terminus, and the multi-exon 3¢ ESTs are marked by blue color at their
3¢-terminus. The scale refers to chromosome positions as described at AtGDB (http://www.plantgdb.org/AtGDB/). ESTs clustered by PaCE are enclosed in
blue-lined boxes, and ESTs clustered by CAP3 are enclosed in brown-lined boxes. (a) Illustration of lack of coverage shown by the 5¢ and 3¢ end ESTs
corresponding to a cDNA transcript (ESTs corresponding to At5g66470, chromosome ®ve). Without clone pair information, PaCE clustered the ESTs into
two clusters, but when the clone pair information of 19859355 and 19873762 was made available, all ESTs were put into one cluster. (b) Illustration of a case
where the 5¢ and 3¢ end ESTs of a gene have overlap (ESTs corresponding to At2g20670, chromosome two). PaCE correctly put the ESTs into one cluster,
while CAP3 separated them into two clusters as shown. (c) Illustration of a case where ESTs corresponding to a gene are partitioned into two clusters by
PaCE (ESTs corresponding to At4g32480, chromosome four). Even though the ®gure shows an overlap between the ESTs 450665 and 5845993, the pair was
not accepted by PaCE, because its quality was below the de®ned threshold. CAP3 put all these nine ESTs in one cluster.
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organism-speci®c information, such as masking repeat
sequences in pair generation. The software can also be
extended to predict alternative splicing sites and the frequency
of such splicing events in the genome. On the other hand, if
organism-speci®c splice site information is known, then such
knowledge can be used to detect alternative spliced isoforms
more accurately.

The software is capable of handling ESTs from either end of
cDNA clones. This is necessary because, while a majority of
the ESTs are derived from the 3¢ end, publicly available EST
databases also have a signi®cant portion of the ESTs derived
from the 5¢ end. For instance, of the 327 632 rat ESTs we
downloaded from dbEST, ~20% were found to be from the 5¢
end. The software can also accept full-length cDNA sequences
as part of the input. If made available, the addition of cDNA
sequences can detect cases where there is lack of suf®cient
coverage of cDNA clones by the ESTs, and can improve the
sensitivity of the results.

As running the software for large data sets takes less time,
the effect of various parameters on EST clustering can be
observed by repeated executions and an optimal set of
parameters can be determined. The variation in the sensitivity
and speci®city of the results can be studied by adjusting the set
of parameters mentioned in the Results section. Run-time can
be tuned by adjusting the batchsize parameter based on the
number of processors. The software has an in-built load
balancing capability during both the preprocessing and
clustering phases.

Clustering plant ESTs

As part of an ongoing effort in the Brendel group to compare
the gene spaces of different plant species, we clustered EST
data sets from 23 species ranging in size from 501 ESTs
(Avena sativa) to 420 694 ESTs (T.aestivum). The results are

summarized in Table 6. After clustering each EST data set
with PaCE, we ran CAP3 on each resulting cluster to generate
a tentative unique contig for the cluster. The multiple
alignment of the ESTs in a cluster and the corresponding
tentative unique contig may be visually inspected at PlantGDB
(http://www.plantgdb.org). Biological analysis of the results
will be presented elsewhere. (We automated the process of
running CAP3 on each of the clusters resulting from PaCE
clustering, and the scripts are also available with the software.)

Conclusion and future research

Our overarching goal has been to facilitate fast and accurate
clustering of large EST data sets, which is accomplished
through the use of memory-ef®cient algorithms, algorithmic
heuristics and high-performance parallel computing. To
summarize, our algorithms achieve the following: (i) reduce
the worst-case memory requirement from quadratic to linear,
(ii) generate promising pairs in decreasing order of maximal
common substring length and cluster the ESTs such that the
number of pairwise alignments is reduced by an order of
magnitude without affecting the quality of clustering, and
(iii) reduce the number of duplicates generated for each
promising pair.

We are currently working on various improvements to
PaCE. With current distribution of our software, we include
scripts to automate the process of applying an assembly
program to each cluster generated by PaCE. Our ®rst goal is to
extend PaCE to do assembly and build consensus sequences in
parallel. This will further simplify the use of PaCE and bring
advantages of high performance parallel computing to the
assembly phase. We also plan to incorporate quality values
available to ESTs as part of input, to ensure quality clustering
and assembly.

Table 6. Distribution of the number of singleton and non-singleton clusters for ESTs from 23 plant species, as generated by PaCE clustering followed by
CAP3 assembly

Plant species Number of ESTs Number of singleton clusters Number of non-singleton clusters

Avena sativa 501 257 100
Arabidopsis thaliana 176 911 19 530 19 300
Beta vulgaris 6034 2930 926
Glycine max 284 714 29 290 24 180
Gossypium arboreum 38 894 11 995 5410
Gossypium hirsutum 9461 4395 1272
Hordeum vulgare 262 138 34 365 19 040
Lotus japonicus 32 096 6718 3794
Lycopersicon esculentum 148 358 13 259 14 914
Lycopersicon hirsutum 2504 1393 328
Lycopersicon pennellii 8346 2360 914
Marchantia polymorpha 1415 872 175
Medicago sativa 719 538 68
Mesembryanthemum crystallinum 17 190 5190 2031
Oryza sativa 108 547 21 714 12 151
Pinus taeda 60 226 12 949 7209
Populus tremula 3 Populus tremuloides 20 084 7014 2565
Secale cereale 8930 3798 1267
Solanum tuberosum 94 420 6653 15 986
Sorghum bicolor 84 712 12 242 11 441
Sorghum propinquum 21 387 5218 3530
Triticum aestivum 420 694 58 776 27 928
Zea mays 196 245 13 887 18 721
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Tackling lack of coverage is important to improve the
sensitivity of the software. Even though the current version of
the software is capable of addressing this issue by accepting
clone pair information and cDNA sequences as part of input,
we intend to improve sensitivity further by consulting protein
databases to see if two ESTs that do not overlap encode
different parts of the same protein, and if so, combine the
clusters containing them. We are evaluating various means to
further improve speci®city of the software. One approach is to
require multiple overlapping pairs as evidence for merging
clusters. We also plan to expand the knowledge base of our
software by incorporating organism-speci®c information such
as repeat sequences and splice sites and thus enhance the
capability of our software.

We are also working on further improving the run-time
performance of our software. We are exploring the use of
alternative data structures such as suf®x arrays, to reduce
memory usage without affecting the run-time signi®cantly.
Further reduction in run-time can be achieved by not
generating promising pairs that correspond to ESTs that
have already been clustered, instead of the current method of
generating and discarding them.
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